Ultrasound Imaging

Advances and Applications

213,99 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781461411796
Sprache: Englisch
Umfang: XI, 360 S., 59 s/w Illustr., 74 farbige Illustr.,
Auflage: 1. Auflage 2011
Einband: gebundenes Buch


Diagnostic and Therapeutic Ultrasound has recently taken an explosive growth for better safer, economic, mobile and high quality healthcare.  This technology is very appealing for medical applications because it is non-ionizing, non-invasive and it is available in most of the medical and clinical facilities. Its low cost, when compared with other medical image modalities, makes it one of the preferred tools for medical monitoring, follow-up and diagnosis. Besides the traditional fields of Cardiology and Obstetrics, where it is extensively used for long time, it has became also very useful in the diagnosis of diseases of the prostate, liver and coronaries and carotids atherosclerosis.  However, Ultrasound images present poor quality, very low signal to noise ratio and a lot of artifacts.  The extraction of useful information from Ultrasound data for diagnosis is a challenge task that makes this medical image modality a very active field of research. The difficulties are being overcome and novel and advanced methods are being proposed for detection, characterization and segmentation of abnormalities in several organs.  In fact, Ultrasound application range is vast, covering almost all organs of the human body, including the brain where Tran-cranial Doppler Ultrasound is very important to assess the brain vasculature.   This book presents some of the recent advances in Ultrasound imaging technology covering several organs and techniques in a Biomedical Engineering (BME) perspective. The focus of the book is in the algorithms, methodologies and systems developed by multidisciplinary research teams of engineers and physicians for Computer-Aided Diagnosis (CAD) purposes.Cardiovascular and Cancer, the most common life-threatening diseases in western countries, are two of the most important topics focused in the book. However, other advanced issues are also presented such as Intravascular Ultrasound, 3D US and Ultrasound in Computer-Aided Surgery (CAS).  Some chapters are direct contributions from medical research groups where Ultrasound has also received great attention in the last decade. By this, new techniques based on Ultrasound were introduced in the clinical practice for diagnosis and therapeutics, mainly in hospital facilities.


J. Miguel Sanches is from the new Department of Bioengineering at the Instituto Superior Técnico / Technical University of Lisbon, Portugal, where he teaches in the area of signal processing and control. His research activity is in Biomedical Engineering, mainly, in image reconstruction and analysis of biological and medical imaging for computer aided diagnosis (CAD) purposes. Andrew F. Laine is a Director of the Heffner Biomedical Imaging Laboratory in the Department of Biomedical Engineering at Columbia University in New York City and is Professor of Biomedical Engineering and Radiology (Physics). His research interests include quantitative image analysis; cardiac functional imaging: ultrasound and MRI, retinal imaging, intravascular imaging and biosignal processing. He is a Fellow of AIMBE and IEEE. Dr. Jasjit S. Suri is an innovator, scientist, a visionary, an industrialist and an internationally known world leader in Biomedical Engineering. Dr. Suri has spent over 20 years in the field of biomedical engineering/devices and its management. He received his Doctorate from University of Washington, Seattle and Business Management Sciences from Weatherhead, Case Western Reserve University, Cleveland, Ohio.


Section 1: Image Formation and Preprocessing.- RF ultrasound estimation from B-mode images.- A Rayleigh Mixture Model for IVUS Imaging.- Ultrasound Speckle / Despeckle Image Decomposition for Tissue Analysis.- Section 2: Ultrasound Plaque Imaging.- Media and Intima Thickness and Texture Analysis of the Common Carotid Artery.- CAUDLES-EF: Carotid Automated Ultrasound Double Line Extraction System using Edge Flow.- Activity Index: a tool to identify active carotid plaques.- Coronary Atherosclerotic Plaque Characterization by Intravascular Ultrasound.- Three-Dimensional Ultrasound Plaque Characterization.- Comparison Between Manual And Automated Analysis For The Quantification Of Carotid Wall By Using Sonography. A validation study with CT.-  Section 3: Ultrasound Advanced Applications .- Real Time 4D Cardiac Segmentation by Active Geometric Functions.- Classification and Staging of Chronic Liver Disease based on Ultrasound, Laboratorial and Clinical Data.- Assessment of Bone Healing Using Ultrasound.- Image-Guided Cryoablation of the Prostate.- Applications of Multiscale Overcomplete Wavelet-Based Representations in Intravascular Ultrasound (IVUS) Images